
Chapter 4: Geometry/Zoning

4-1 Chapter 4: Geometry/Zoning

Chapter 4: Geometry and Zoning

The First Step

The first step in setting up a TART95 problem is to define its geometry by defining spatial
zones in terms of the surfaces that bound these zones. Geometry refers to the boundary
functions of a problem. Combining a number of boundary functions creates a unique and
unambiguous volume called a zone. Presently TART95 uses three types of boundaries:
planes, aligned quadratics and rotated quadratics. The quadratic boundaries describe
surfaces that are either closed and completely bounded (e.g., a sphere, that it bounded by a
closed surface at the radius of the sphere) or infinite (e.g. a cone, that extended to infinity,
in both directions from its apex).

Planes are described by the equation,

a(x0 - x) + b(y0-y) + c(z0-z) = 0

For example, a plane perpendicular to the z axis at z = z0, is defined by the equation,

z0 - z = 0, a = b = 0, c = 1

Aligned quadratics (aligned with x, y or z axis) are described by the equation,

a(x0 - x)2 + b(y0 - y)2 + c(z0 - z)2 = r2

For example, a sphere of radius r centered at the point x = x0, y = y0, z = z0, is defined by
the equation,

(x0 - x)2 + (y0 - y)2 + (z0 - z)2 = r2, a = b = c = 1, r = radius of the sphere

The aligned quadratic boundary function can be used to describe spheres, ellipsoids,
cylinders, cones and hyperboloids of one or two sheets. This equation specifies conic
sections that may be rotated symmetrically about the x, y or z axis or any axis parallel to
the coordinate axes.

Rotated quadratics (initially aligned and then rotated using surfp or srotate input) are
described by the equation,

a(x0 - x)2 + b(y0 - y)2 + c(z0 - z)2 +
d(x0 - x)(y0 - y) + e(x0 - x)(z0 - z) + f(y0 - y)(z0 - z) = r2

The cross terms in x, y, z result from the rotation of the initially aligned quadratic about its
center (x0, y0, z0).

Chapter 4: Geometry/Zoning

4-2 Chapter 4: Geometry/Zoning

The procedures used to define and input the boundary function parameters, x0, y0, z0, a,
b, c, etc., are described in detail in the section of this manual on TART95 INPUT. Here I
will discuss how these parameters are actually used in calculations.

Coordinates of Particles

TART95 tracks neutrons and/or photons, both of which will be referred to as "particles",
in the following discussion. A particle is defined by its spatial coordinates (x, y, z), its
direction coordinates by direction cosines (alpha, beta, gamma), relative to the (x, y, z)
axii, respectively, its speed (neutrons) or energy (gamma), and its time since it originated
(t).

For scoring, TART95 uses these coordinates to define the track length of particles within
spatial zones and within specified time intervals. The following sections will describe how
TART95 tracks particles in space. First we will discuss how to best define the spatial
coordinate system of your problems, to allow you to use as many features of TART95 as
possible.

Preferred axis of orientation

TART95 uses general (x, y, z), 3-D geometry. However, it has a preferred axis of
orientation = the z axis; this is strictly for historical reasons. For general 3-D problems
there is no advantage to using any preferred axis of orientation. However, for problems
that have one or more axii of symmetry there is a definite advantage when using TART95
to defining one axis of symmetry to be the z axis. When this is done: 1) you will be able to
use all of the geometry keywords as input to define your space, 2) TART95 can
analytically calculate the volume and mass of all zones that are symmetric about the z axis.
For general 3-D problems or problems in which you use an axis of symmetry other than
the z axis, TART95 cannot analytically calculate volumes and mass of zones; however, it
can use Monte Carlo sampling to approximate the volume of zones.

Therefore it is recommended that if your problem has an axis of symmetry, you define this
to be the z axis of your geometry. For example, if you have a number of concentric
cylinders whose central axis are all oriented in the same direction, in general it is
completely arbitrary what coordinate system you use and what direction you define this
central axis to be. However, for use with TART95 it is recommended that you define this
to be the z axis. Similarly if you have a number of parallel planes, it is recommended that
you define them to be perpendicular to the z axis.

Zoning

TART95 uses 3-D combinatorial geometry. The geometry is 3-D in the sense that it
always deals with 3-D volumes, as opposed to 2-D areas. Even if your geometry is
inherently 1-D (e.g., planar or cylindrical) or 2-D (e.g., R-Z symmetric geometry), you
should be aware that TART95 will track in 3-D and you MUST define your geometry

Chapter 4: Geometry/Zoning

4-3 Chapter 4: Geometry/Zoning

accordingly. For example, even if your geometry is 1-D cylindrical, you MUST be aware
that defining a cylinder by input does not define a circle in a plane; it defines a 3-D
cylinder extending to infinity in both directions along its axis. The geometry is
combinatorial in the sense that each zone is defined by the combination of surfaces that
bound that zone.

The coordinate system is (x, y, z) rectilinear space. Each problem is made up of a number
of spatial zones. Each spatial zone is defined by the surfaces that bound the zone. In order
to uniquely define zones, in addition to defining which surfaces bound each zone you must
also define which side of each surface the zone is located on. It isn't enough to say that a
zone is bounded by a plane at x0 = 5 cm, since the zone could be on either side of this
plane. Is the zone all of the space with x < 5 cm, or all of the space with x > 5 cm? For
example, if we have a simple problem only involving two concentric spheres, sphere 1 and
2, the problem could involve three spatial zones: 1) inside the inner sphere, 2) between the
two spheres, 3) outside the outer sphere. In this case the definition of the three spatial
zones should specify that the zones are: 1) inside the inner sphere, 2) outside the inner
sphere and inside the outer sphere, 3) outside the outer sphere. Note, generally it is not
sufficient to merely say a surface bounds a zone; you must also specify whether the zone is
inside or outside the surface. For example, if in the previous example we had said that
zone 2) is inside both spheres, rather than outside the inner sphere and inside the outer
sphere, we would be describing a different spatial region. You might ask why would one
possibly do such a thing. You will find that this is a typical error that one can very easily
introduce into problems without realizing it. The concept of inside and outside surfaces is
probably the most difficult thing for users of combinatorial geometry codes to get used to
and completely understand; even experienced users will occasionally make errors.
Therefore it is worth spending some time discussing it in detail.

TART95 surfaces are either linear or quadratic. Therefore all surfaces can be described by
only considering two simple equations,

linear: f(x, y, z) = a (x0 - x) + b (y0 - y) + c (z0 - z)

quadratic: f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2]

For any given spatial point (x, y, z) and surface with given parameters (x0, y0, z0, a, b, c,
r) to determine whether the point is inside or outside the surface it is sufficient to insert
these parameters into one of the above two equations and solve it. If the answer is
positive the point is inside the surface, if negative the point is outside the surface, if zero
the point is on the surface. This isn't as complicated as it sounds. Let's consider in detail
all of the surfaces that you will have to deal with.

For simple closed surfaces, such as spheres, ellipsoids or cylinders the concept of inside
and outside is fairly intuitive and easy to visualize. If you visualize a sphere, ellipsoid or
cylinder you know what inside or outside means; you are either inside or outside the
object, it's as simple as that. For example, for a sphere the equation is,

Chapter 4: Geometry/Zoning

4-4 Chapter 4: Geometry/Zoning

f(x, y, z) = r2 -[(x0 - x)2 + (y0 - y)2 + (z0 - z)2]

Note, [(x0 - x)2 + (y0 - y)2 + (z0 - z)2] is merely the square of the distance of the point
(x, y, z) from the center of the sphere (x0, y0, z0). If this distance is less than the square of
the radius of the sphere, r2, the point is inside the sphere; conversely if this distance is
larger than r2 the point is outside the sphere.

For any spatial point (x, y, z) inside the sphere the result of solving this equation is
positive, for any point outside the sphere it is negative and for any point on the surface
of the sphere it is zero. So that for these surfaces the concept of inside and outside is
simple to understand.

For open surfaces, such as cones and hyperboloids, it may not be as intuitively obvious
what inside and outside mean. In these cases the surface will be with respect to a
reference axis and will usually be rotationally symmetric about this reference axis. For
example, for a circular cone that is rotationally symmetric about the z axis the equation is,

f(x, y, z) = p(z - z0)2 - [(x - x0)2 + (y - y0)2], a = b =1, p = -c > 0, r = 0

At any z location p(z - z0)2 is a constant, and [(x - x0)2 + (y - y0)2] describes a circle in
the z = constant plane. At z = z0, the radius of this circle is zero. For any other value of z
the radius is positive and increasing when z is further from z0 (further in either direction
from z0; the cone extends to infinity in z in both directions from the apex at z = z0). For
any given (x, y, z) point, the point is inside the cone if at the given value of z the point is
inside the circular cross section in the z = constant plane.

Any spatial point (x, y, z) that is closer to the reference axis than the surface, is inside,
and any point that is further from the axis, is outside. Think of a cone or hyperboloid as a
solid object between its axis of symmetry and its surface, e.g., for a cone visualize a
drinking cup. Can you visualize whether a drop of water is inside or outside of your
drinking cup? If you can, you will have no problem with these surfaces. If not, you can
always solve the equation for the surface. For example, for a cone, pick any (x, y, z) point
and solve this equation to define whether or not a point is inside or outside the surface.

For the last example, consider a plane perpendicular to the x axis at x = x0, the equation
of the surface is,

x0 - x = 0

All spatial points (x, y, z) with x0 > x will be inside the surface (since x0 - x > 0), and all
points with x0 < x will be outside the surface (since x0 - x < 0), and all points with x0 = x
will be on the surface.

Chapter 4: Geometry/Zoning

4-5 Chapter 4: Geometry/Zoning

For planes you may prefer to think in terms of below and above instead of inside and
outside. We encourage you not to do this. For simple aligned planes it may be easy for
you to think of above and below, but for general rotated planes this can be very
confusing. This is also true of general cones. The reason is that in these cases the
equations are,

plane: a (x0 - x) + b (y0 - y) + c (z0 - z) = 0

cone: -[a (x0 - x)2 + b (y0 - y)2 +c (z0 - z)2] = 0 r = 0,
 two coefficients, a, b, c > 0, one < 0

Note, that since r = 0, by changing the sign of all of the coefficients, a, b, c, we are
defining exactly the same surface, but if we solve these equations the meaning of inside
and outside based on the sign of the answer is completely reversed.

Fortunately only in the case of specifying general planes and quadratic surfaces will you be
faced by this inconsistency in the sign of the coefficients defining the surface; in all others
cases the program will automatically define the sign of all coefficients. When you do input
parameters defining general planes or quadratics try to remember to define the coefficients
a, b, and c, so that inside and outside make the most sense to you.

If you can understand the concept of inside and outside for planes, spheres, cylinders,
cones, ellipsoids, hyperboloids, you are in, because those are all of the surfaces that you
need understand when dealing with TART95. If you don't completely understand the
concept don't worry about it that's the whole purpose of the TARTCHEK code, which
will completely check your description of geometry and tell you whether or not you have
made an error in specifying inside or outside. If you are not sure of the sign of a surface
rather than worry about it, bang in anything, run TARTCHEK, and let this interactive
graphics program immediately tell you whether or not you have made the right choice. If
you have made a mistake you can then quickly change the sign of the surface and run
TARTCHEK again to insure that you now have it right.

Tracking and Terminating Histories

TART95 will start from the current particle coordinates: space, direction, energy and time,
and track the particle until the particle disappears (e.g., is absorbed) or is outside the
region of interest - in terms of space, energy or time.

Elsewhere, how to limit tracking in energy and time are discussed. Here we will discuss
how to limit space. TART95 will track particles in any zone that contains material and
terminates the history if a particle enters an empty (void) zone. In a well defined geometry
all interiors zones of interest to you MUST contain material, and all exterior zones MUST
be empty (void), so that any particle entering any exterior zone will be terminated. By
convention material number zero means a terminus zone, i.e., a void that TART95 will not
track particles through. The default material for all zones is material number zero.

Chapter 4: Geometry/Zoning

4-6 Chapter 4: Geometry/Zoning

Therefore unless you explicitly assign a material to a zone, the zone is by default assumed
to be a void, terminus zone.

Warning - this is the only way that TART95 knows how to limit spatial tracking, so that
you must use care to insure that ALL interior zones contain material and your problem is
surrounded by one or more exterior non-re-entrant zones which are empty (void); this
point is discussed in detail below. If you leave any interior zone empty (void), this is not
considered by the code to be an error, but all particles that enter such zones will have their
history terminated - the zone will appear to be perfectly absorbing. Before starting any
TART95 runs, it is strongly suggested that you use program TARTCHEK, to insure that
you have no interior empty (void) zones.

Using Interior Void Zones

We will mention one case in which you may want to leave an interior zone void, thereby
killing all particles that enter it; particles can never exit such a zone. You may want to do
this if you have a geometrically complicated problem in which you want to vary the
contents of a given zone, e.g., you might vary material, density, temperature, any
parameters characterizing the contents of the zone. You can optimize the running time for
a series of such calculations by first running a calculation with the zone void and involving
many histories, only a small number of which will find their way to the zone. By specifying
tally type 12 for the initially void zone the coordinates of all particles entering the zone
will be written to a binary file. During subsequent runs you can change the geometry only
by defining the composition of the zone and read the binary file to define a source incident
on the zone. This source will then be tracked through your entire geometry and give you
the answer you want. Note, if you do this for a series of subsequent runs each differing
only in the contents of the one zone, the source incident on the zone will be exactly the
same in each case (will be exactly correlated) which will tend to highlight the effects of
any changes that you have made in the zone from one run to the next.

For example, consider a problem in which the probability of neutrons starting from a given
source distribution finding a given zone is only 1/100, and you want to examine 10
changes in the composition of the zone. If we first perform an initial run involving a
million source particles about 10,000 of them will find their way to the zone and these can
all be used in subsequent calculations. We will then subsequently make a separate run for
each of the 10 compositions; each of these runs will read the 10,000 histories from the
binary file and each can contribute to the results that we want. In these 11 runs we will
have tracked 1.1 million histories (a million in the initial run and 10 times 10,000 in the
subsequent 10 runs). In a second approach we could make a separate run for each of the
10 compositions using 1,000,000 source particles to obtain the statistically same 10,000
histories that find their way to the zone. The second approach will take almost 10 times as
long to run, and the source distributions at the surface of the zone for the 10 problems will
not be completely correlated, as they are in the first approach.

Defining the Universe

Chapter 4: Geometry/Zoning

4-7 Chapter 4: Geometry/Zoning

When using TART95 you MUST define all space - the entire universe - not just the small
region that you are really interested in. This isn't as difficult as it sounds. All it means is
that in additional to the spatial region that is really of interest to you, you MUST surround
your space by one or more closed, non-re-entrant surfaces, and define everything outside
these surfaces (the rest of the universe) to be spatial regions, that do not contain any real
material.

A non-re-entrant surface means that any particle crossing this surface can never re-enter
the geometry in its current direction of travel. In this case the particle can never find its
way back into the spatial region of interest, so that it can have no effect on the results, and
can be ignored (its history can be terminated). For simple geometries, such as concentric
spheres or cylinders it is easy to correctly define non-re-entrant surfaces completely
surrounding the spatial region of interest. For example, for a series of concentric spheres
with void outside the largest radius sphere, the largest radius sphere is a surrounding, non-
re-entrant surface, since any particle crossing this surface can never find its way back into
the spheres. Note, this is only true if there is vacuum outside the spheres; if there is air or
anything else outside the spheres a particle could scatter and find its way back into the
spheres. For more complicated geometries it may be more complicated. It is highly
recommended that before actually running TART95 you use the interactive graphics code
TARTCHEK to insure that you have correctly closed your geometry and do not have any
void exterior or interior re-entrant zones.

Closing Your Geometry

You MUST define a finite volume spatial region that TART95 should track particles in.
For problems that are inherently closed, e.g., a series of concentric spheres, this is
obviously simple. In this case the finite spatial volume, is the entire volume enclosed by the
largest radius sphere; the rest of the universe is everything outside this sphere.

In cases where none of the dimensions extend to infinity you can close your geometry by
enclosing it inside a surrounding non-re-entrant surface or surfaces. For example, you can
use a spherical surface that encloses all of the space that you are interested in. In some
cases you may have to define more than one exterior zone in order to completely surround
the space that you are actually interested in. For example, for a problem involving a
number of concentric cylinders of finite length, you can close your geometry by defining
empty (void) zones outside the largest radius cylinder and two planes, orthogonal to the
cylinders, one at each end of the cylinders, with one empty (void) zone below the lower
plane and another empty zone above the higher plane. In this case there are three exterior
non-re-entrant zones all of which should to empty (void).

In both of the cases described above it is important that all space inside the bounding non-
re-entrant surfaces contain material, i.e., are not empty (not avoid), and that all space
outside these surfaces be empty (void), so that any particle entering any exterior zone will
have its history terminated.

Chapter 4: Geometry/Zoning

4-8 Chapter 4: Geometry/Zoning

For other problems you may have to use reflecting surfaces to define a finite volume. For
example, in a problem involving only a series of concentric cylinders extending to infinity
along the axis of the cylinders, you can use reflecting planes that are orthogonal to the axis
of the cylinders to define a finite volume space and yet still simulate transport in infinite
length cylinders.

When using reflectors to simulate infinite dimensions or repeating spatial conditions, (e.g.,
a number of identical fuel elements), be sure that your reflectors truly simulate your
geometry. For example, to simulate a 3-D infinitely repeating array of fuel elements, you
can use reflectors to divide the infinite space into a number of square or hexagonal cells,
since these shapes can exactly fill the entire 3-D space without any overlapping space.
However, in this case you cannot use a reflecting cylinder, since you cannot arrange a
series of cylinders in 3-D to completely fill the space without any spatial overlap.

Tracking in 3-D Geometry

In order to track (follow) particles in 3-D geometry TART95 has to be able to define: 1)
what zone a source particle is initially located in, 2) what is the shortest distance along the
particles direction of travel to any bounding surface of the zone the particle is currently
located in, 3) if a particle reaches and crosses a bounding surface of the current zone, what
spatial zone does it enter, 4) if a particle reaches and reflects from a bounding surface of
the current zone, what is its new direction, 5) when scoring flux, rather than current, when
crossing surfaces the code must be able to define the cosine of the direction of the particle
relative to a vector normal to the surface (to allow scoring reciprocally weighted by this
cosine to define flux). These are the only things that the code has to be able to define
about the geometry in order to track in 3-D. The TART95 geometry package has been
designed to be modular and virtually completely isolated from the remainder of the code.
Only a few subroutines are required to completely define the geometry and allow particles
to be tracked in 3-D geometry. Each of these routines is described below.

What Zone is a Particle Currently located in - WHATZONE

Starting from a source particle TART95 will cycle through all spatial zones in a problem
and use the bounding surfaces for each zone to determine whether a particle in inside or
outside a zone. The input describing each bounding surface for each zone defines whether
the zone is inside or outside this bounding surface, as discussed above. A particle is
inside a zone if and only if its spatial coordinates (x, y, z) satisfy ALL of the bounding
surfaces. Starting from a source particle this search is optimized by the input for each
source distribution indicating a most probable zone where the circular search of zones
should start. Warning - the code will consider a particle to be in a zone the first time it
finds any zone where the space point (x, y, z) satisfies all bounding surface conditions to
indicate this point is within the zone. Therefore, the code can become confused if you have
overlapping zones, where a given space point is in more than one zone. Before running

Chapter 4: Geometry/Zoning

4-9 Chapter 4: Geometry/Zoning

TART95 it is strongly suggested that you use TARTCHEK to insure that your geometry
does not have overlapping zones.

When a particle reaches the boundary of a zone and crosses it, in order to determine which
zone has now been entered, the code uses exactly the same logic as described above
starting from sources. However, in this case the search is optimized by defining a most
probable zone that will be entered when a particle leaves a given zone across a given
surface. The user has the input option of explicitly defining the most probable zone
entered using bjp input (not recommended) or the user can use jb input and allow the
code to automatically do this optimization statistically, based on the first particle that
crosses the surface once the problem starts running.

To determine if a particle is in a given zone the code has a list of bounding surfaces,
defining the type of surface, e.g., plane, sphere, cylinder, cone, etc., the parameters of
each surface, e.g., center and radius of a sphere, and an integer, +1 or -1, indicating
whether the zone is inside or outside this surface. The only types of surfaces considered
are,

linear: f(x, y, z) = a (x0 - x) + b (y0 - y) + c (z0 - z)

aligned
quadratic: f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2]

rotated
quadratic: f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2

d(x0 - x)(y0 - y) + e(x0 - x)(z0 - z) + f(y0 -y)(z0 - z)]

If surface sign (+1 or -1) times f(x, y, z) is positive the point (x, y, z) is inside the zone;
otherwise it is outside the zone. If f(x, y, z) is zero the point is on the boundary of the
zone.

Starting from the most probable zone the code will test each zone in turn in a circular
fashion, testing all bounding surfaces of each zone until it finds a bounding surface and
sign that indicate the point (x, y, z) is outside the zone - in which case it will proceed to
test the next zone - or, testing all bounding surfaces and signs indicates that the point is
definitely within the zone, in which case the search is complete.

If after testing all zones the code finds that the point (x, y, z) is not in any zone, this is
considered to be an error and execution will terminate. In order to avoid this problem
during execution of TART95, it is strongly recommended that you use program
TARTCHEK to insure that all spatial points are defined. Only after testing with
TARTCHEK should you use TART95.

Distance to Boundary Calculation - HOWFAR

Chapter 4: Geometry/Zoning

4-10 Chapter 4: Geometry/Zoning

Once the code knows what zone a particle is located in, it must define the distance, and
therefore time, to the next "event". Between events neutrons and photons move in their
current direction of travel without interacting with the medium through which they are
traveling. The next "event" could be: 1) a collision, 2) reaching a census time 3) reaching
a spatial zone boundary, .

The distance to collision is sampled from an exponential distribution in accordance with
the total cross section. The distance to census time is based on the difference between the
census and current times divided by the speed of the particle. How to define the distance
to a spatial zone boundary will be discussed here. The next "event" is defined by the
smallest of the three possible distances: collision, census time, or boundary.

In order to define the distance to a boundary of a zone, consider a particle located at the
spatial point (x, y, z) moving in the direction (alpha, beta, gamma), where these are the
direction cosines with respect to the (x, y, z) axes. Between events the particles are
considered to move in a straight line in their current direction of motion. The question is:
how far does a particle have to travel in its current direction of motion in order to
intercept a bounding surface of the zone that the particle is currently located in? We are
only interested in the minimum, positive, distance to any of the bounding surfaces; we are
not interested in zero distances, where the particle is on the boundary. In order to answer
this question we have to calculate the distance to each and every one of the bounding
surfaces of the zone that the particle is currently located in and keep track of the
minimum, positive distance.

As described above, when we decide to advance a particle to the nearest bounding surface
of a zone, the subsequent search by WHATZONE to define what zone is next entered is
optimized by for each bounding surface of each zone, defining the most probable zone that
the particle will enter when it leaves the current zone across any one of its bounding
surfaces. For example, a given zone may have 30 bounding surfaces - for this zone each of
these bounding surfaces defines what zone will be entered if a particle crosses it. Another
zone may have 23 bounding surfaces, some of which may be the same as the bounding
surfaces of the first zone - again for this zone each bounding surface defines which zone is
entered if a particle crosses it. The new zone entered is not defined only once for each
defined surface, but rather is defined for every zone that this surface bounds. Therefore,
when we are calculating the minimum, positive distance to any bounding surface of the
current zone, we need to keep track of both the minimum distance and what surface the
particle will cross if we advance the particle to the surface.

Why are we only interested in positive distances? We are only interested in distances that
will truly advance a particle in its current direction of travel to a point where it can leave a
zone. This means that we are certainly not interested in negative distances. What about
zero distances? How can advancing a particle zero distance allow it to leave a zone? It
can't, and only considering positive distances avoids some rare, and yet still possible,
events, where a particle is traveling on and parallel to one of the bounding surfaces, e.g., a
source particle traveling exactly on the surface of a cylinder, and exactly parallel to the

Chapter 4: Geometry/Zoning

4-11 Chapter 4: Geometry/Zoning

axis of the cylinder - not at all a rare event if this is how the source distribution is defined.
In cases such as this if we accepted the fact that the distance to the bounding cylinder is
exactly zero and use this to advance particles they wouldn't move and the code could end
up in an infinite loop. By realizing that since we are only interested in distances that will
truly advance a particle to a point where it can leave a zone, we can ignore the zero
distance solutions, i.e., advancing the particle zero distance cannot allow it to leave the
zone.

In order to calculate the minimum, positive distance to any bounding surface of a zone,
we have to consider the different types of bounding surfaces used by TART95. The only
three types of surfaces considered are,

linear: f(x, y, z) = a (x0 - x) + b (y0 - y) + c (z0 - z)

aligned
quadratic: f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2]

rotated
quadratic: f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2

d(x0 - x)(y0 - y) + e(x0 - x)(z0 - z) + f(y0 -y)(z0 - z)]

In each case we have to define,

f(x', y', z') = 0

where,

x' = x + R alpha
y' = y + R beta
z' = z + R gamma

and solve for R, the distance to the boundary. All this equation says is that if a particle is
located at the point (x, y, z) and is moving in the direction (alpha, beta, gamma), it has to
move a distance R in this direction in order to intercept the surface. This distance may be
negative, zero, or positive; again, we are only interested in positive distances.

For linear surfaces we end up with a linear equation in R,

C1 R + C0 = 0

R = -C0/C1

C1 = -[a alpha + b beta + c gamma]
C0 = a (x0 - x) + b (y0 - y) + c (z0 - z)

Chapter 4: Geometry/Zoning

4-12 Chapter 4: Geometry/Zoning

Note, C0 is the definition of the boundary function, f(x, y, z), so that if C0 is equal to zero
, the particle is on the boundary; since we are only interested in positive distances we can
ignore this solution. If C1 is equal to zero the particle is moving parallel to the surface and
there is no solution that we are interested in.

For quadratic surfaces we end up with a quadratic equation in R,

C2 R2 + 2 C1 R + C0 = 0

R = [- C1 +/- Sqrt(C12 - C2 C0)]/C2

For an aligned quadratic,

C2 = -[a alpha2 + b beta2 + c gamma2]
C1 = [a alpha (x0 - x) + b beta (y0 - y) + c gamma (z0 - z)]
C0 = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2]

For a rotated quadratic,

C2 = -[a alpha2 + b beta2 + c gamma2 +
 d alpha beta + e alpha gamma + f beta gamma]
C1 = [a alpha (x0 - x) + b beta (y0 - y) + c gamma (z0 - z) +
 {d(beta (x0 -x) + alpha (y0 -y)) +
 e(gamma (x0 -x) + alpha (z0 -z)) +
 f(gamma (y0 -y) + beta (z0 -z))}/2]
C0 = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2 +
 d(x0 - x)(y0 - y) + e(x0 - x)(z0 - z) + f(y0 -y)(z0 - z)]

For the rotated quadratic the first line of the definitions of C2, C1 and C0 are identical to
the definitions for an aligned quadratic; the additional lines are due to the cross terms in x,
y, z.

There is no real solutions if C12 - C2 C0 is less than zero.

Note, C0 is the definition of the boundary function, f(x, y, z), so that if C0 is equal to zero
, the particle is on the boundary; since we are only interested in positive distances we can
ignore this solution. However, in this case we still have to consider the other root of the
equation,

R = -2 C1/C2

If C1 is equal to zero the only possible positive root is,

R = + Sqrt(-C0/C2)

Chapter 4: Geometry/Zoning

4-13 Chapter 4: Geometry/Zoning

If C2 is equal to zero the particle is moving parallel to the surface and one root is infinite,
in which case we still have to consider the solution,

R = -C0/(2 C1)

This case can occur when a particle is traveling parallel to the surface of a cone on one
side of the apex of the cone, but it can still intercept the surface of the cone on the other
side of the apex.

In addition to the limiting cases where one, or more, of the coefficients C2, C1, C0, are
exactly zero, we must also consider cases where these coefficients approach these limits.
We can consider two cases. The first case,

C12 >> C2 C0

in which case we can expand the Sqrt using,

Sqrt(1 + x) = 1 + x/2 - 3*x2/2/2! + 5*x3/2/3!

x = C2 C0/C12

R = [- C1 +/- Sqrt(C12 - C2 C0)]/C2
 = [- C1 +/- C1 Sqrt(1 + x)]/C2, x = -C2 C0/C12
 = [- C1 +/- C1 (1 + x/2 - 3*x2/2/2! + 5*x3/2/3!]/C2

The two roots are,

R = [- 2 C1 - C1 (x/2 - 3*x2/2/2! + 5*x3/2/3!]/C2, using the - radical
R = [+ C1 (x/2 - 3*x2/2/2! + 5*x3/2/3!]/C2, using the + radical

Note, as C0 approaches zero (x --> 0), the first of these yields the expected root, -
2C1/C2, and as C2 approaches zero, the second of these yields the expected root, +C1
x/2/C2 = -C1 C2 C0/C12/2/C2 = -C0/(2 C1). In general the above two solutions can be
used not only in the limiting case where C2 or C0 is exactly zero, but also in cases where
these limits are being approached.

The second case is,

C12 << |C2 C0|, C2 C0 < 0

Note, earlier it was stated that there are no real roots for C12 - C2 C0 < 0. However when
C2 C0 < 0, C12 - C2 C0 cannot be less than zero, and we must consider the case C12 <<
|C2 C0|.

Again we can expand the Sqrt,

Chapter 4: Geometry/Zoning

4-14 Chapter 4: Geometry/Zoning

x = C12/(c2 C0)

R = [- C1 +/- Sqrt(C12 - C2 C0)]/C2
 = [- C1 +/- Sqrt(-C2 C0) Sqrt(1 + x)]/C2, x = -C12/C2 C0 >= 0
 = [- C1 +/- Sqrt(-C2 C0) (1 + x/2 - 3*x2/2/2! + 5*x3/2/3!]/C2

The two roots are,

R = [- C1/C2 + Sqrt(-C0/C2) (1 + x/2 - 3*x2/2/2! + 5*x3/2/3!]
R = [- C1/C2 - Sqrt(-C0/C2) (1 + x/2 - 3*x2/2/2! + 5*x3/2/3!]

Note, as C1 approaches zero (x ---> 0), the first of these yields the expected root, +Sqrt(-
C0/C2). In general the above two solutions can be used not only in the limiting case where
C1 is exactly zero, but also in cases where this limit is being approached.

In order to find the minimum, positive, distance to any bounding surface of the zone that a
particle is currently located in, TART95 initializes the minimum distance to a number that
is large compared to the dimensions of the system, e.g., 1060. It then tests each surface in
turn, updating the minimum distance, until all bounding surfaces have been tested.

In order to minimize the number of tests involved, and avoiding roundoff or undefined
problems, due to division by zero or very small coefficients, instead of solving for the
actual roots,

linear: R = -C0/C1

quadratic: R = [- C1 +/- Sqrt(C12 - C2 C0)]/C2

where we have to divide by C1 or C2, TART95 solves for,

linear: R' = R C1 = -C0

quadratic: R' = R C2 = [- C1 +/- Sqrt(C12 - C2 C0)]

and compares these roots to the current minimum distance, Rmin, times C1 or C2, as
appropriate. In each case only if Rmin C1 or Rmin C2 is positive and R' is positive and
closer to zero, need we divide by C1 or C2 to define the new minimum distance to
boundary. Note, these tests automatically handle the limiting cases where C1 or C2 are
exactly zero, as well as the cases where these coefficients are very small and approaching
zero. For example, if C1 is exactly zero, Rmin C1 is exactly zero, and R' cannot be
positive and closer to zero, so that all such roots are ignored. Similarly, when C1 is very
small and approaching zero, Rmin C1 will also be very small, and in order to be accepted
R' would have to be positive and even smaller, in which case we can safely divide by C1
without worrying about overflow.

Chapter 4: Geometry/Zoning

4-15 Chapter 4: Geometry/Zoning

As actually implemented in TART95 these tests have to consider the sign (+ or -) of the
coefficient C1 or C2, as appropriate. Even with this additional concern the resulting
algorithm of very fast and efficient and avoids all roundoff and undefined number (due to
division by zero) problems.

Advancing into a new zone

Once the minimum distance to a boundary has been defined and it has been decided to
advance the particle to the boundary (as opposed to its having a collision or reaching
census time), the particle is advanced in its current line of travel a distance Rmin plus a
small additional distance (the geometric uncertainty). By advancing the particle a distance
Rmin the particle will end up on the bounding surface. If we leave the particle there it will
complicate the calculations when we next try to define what zone the particle is now in,
e.g., if it is on a boundary between two zones, which zone is it "in"? (as described above).
Therefore, we advance the particle an additional small amount to, hopefully, move the
particle off the boundary and into a new zone. We can then efficiently use WHATZONE
(as described above) to define what zone the particle has now entered. The default
geometric uncertainty is 10-6 cm, which can be modified by user input using sentl 10. For
most problems the default value is adequate. Only if you have zones which are very thin,
and comparable to 10-6 cm or less, need you change the default; in this case failure to
decrease the geometry uncertainty can allow particles to pass through very thin zones
without ever "seeing" them. For very large zones there is generally no problem as long as
the zones are not so large that adding 10-6 cm to the distance to boundary results in
underflow and ignores the geometric uncertainty; if this happens the particle will end up
on a boundary and WHATZONE can become confused when attempting to define the
new zone the particle is located in. TART95 performs all calculations using REAL*8 (64
bit) arithmetic, which is accurate to about 16 digits. Therefore as long as the thickness of
zones is small compared to 10+10 cm, the default geometric uncertainty is adequate. If
you have larger zones you should increase the geometric uncertainty.

Reflection from a Zone - REFLECT

In TART95 any zone may be identified by input as a reflecting zone. It is important for the
user to understand that with TART95 individual zones, not individual surfaces, are defined
as reflecting. When a zone is identified as reflecting, particles crossing any bounding
surface of the zone will be reflected from the surface of the zone. Input keywords reflx,
refly, reflz, reflgp, and reflq identify zones as reflecting, like an x plane, y plane, z plane,
general plane or quadratic surface, respectively. Since a zone may be bounded by more
than one surface all of these keywords are treated as equivalent and whenever a particle
enters a reflecting zone it will be reflected according to the type of surface it crossed
(plane, sphere, cylinder, etc.), regardless of which input keyword was used to identify the
zone as reflecting. However, in the output listing the code will identify how many particles
where reflected from x, y and z planes. Therefore, if you are interested in this information
it is suggested that you use the appropriate input keyword.

Chapter 4: Geometry/Zoning

4-16 Chapter 4: Geometry/Zoning

The method of entering a reflecting zone is exactly the same as described above, where a
particle is advanced to the surface of a zone plus the geometric uncertainty and
WHATZONE is then used to determine what zone the particle has entered. The material
number in the new zone is then used to decide how to proceed: 1) if the material number
is positive, transport continues in the zone in the current direction of travel, 2) if the
material number is zero, the zone is empty (void) and the particle history is terminated
(this should only be used for exterior, non-re-entrant zones), or 3) if the material number
is negative, the particle is reflected from the zone. Whenever a reflection keyword is used
as input to define a zone to be reflecting, TART95 will identify the zone as being
reflecting by defining the material number assigned to the zone to be negative.

If the zone is reflecting the particle is first moved backwards along its current direction of
travel by the geometric uncertainty, so that it is exactly on the surface that it crossed to
enter the zone. The particle is then reflected from this surface by defining three new
direction cosines (alpha, beta, gamma). It is then advanced in its new direction by the
geometric uncertainty, to move it off the boundary to the inside of a zone. WHATZONE
is then used to define what zone the particle is now located in and the cycle of tracking,
terminating, or reflecting the particle continues.

In order to reflect particles the code first defines the normal to the surface. We will only
be interested in points (x, y, z) that are located on the surface and we will define an
outward directed unit vector normal to the surface. The types of surfaces we must
consider are,

linear: f(x, y, z) = a (x0 - x) + b (y0 - y) + c (z0 - z)

aligned
quadratic: f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2]

rotated
quadratic: f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2

d(x0 - x)(y0 - y) + e(x0 - x)(z0 - z) + f(y0 -y)(z0 - z)]

For each type of surface for any point (x, y, z) on the surface, f(x, y, z) = 0, and we can
write,

linear: a x + b y + c z = a x0 + b y0 + c z0 = r

aligned
quadratic: a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2 = r2

rotated
quadratic: a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2 +

d(x0 - x)(y0 - y) + e(x0 - x)(z0 - z) + f(y0 -y)(z0 - z)] = r2

Chapter 4: Geometry/Zoning

4-17 Chapter 4: Geometry/Zoning

The components of the surface normal to the x, y, z axii are defined by taking the three
partial derivatives of the boundary function with respect to x, y and z.

In the linear case,

d(f)/d(x) = a
d(f)/d(y) = b
d(f)/d(z) = c

In the aligned quadratic case,

d(f)/d(x) = 2a(x0 - x)
d(f)/d(y) = 2b(y0 - y)
d(f)/d(z) = 2c(z0 - z)

and in the rotated quadratic case,

d(f)/d(x) = 2a(x0 - x) - [d(y0 - y) + e(z0 - z)]
d(f)/d(y) = 2b(y0 - y) - [d(x0 -x) + f(z0 - z)]
d(f)/d(z) = 2c(z0 - z) -[e(x0 -x) + f(y0 -y)]

A normalized vector is defined by normalizing each component by dividing by,

Sqrt[{d(f)/d(x)}2 + {d(f)/d(y)}2 + {d(f)/d(z)}2]

For the linear case the normalization is,

Sqrt[a2 + b2 + c2]

For the aligned quadratic case it is,

2 Sqrt[a2(x0 -x)2 + b2(y0 - y)2 + c2(z0 - z)2]

For the rotated quadratic case it is,

Sqrt[{2a(x0 - x) -[d(y0 - y) + e(z0 -z)]}2 +
 {2b(y0 - y) -[d(x0 -x) + f(z0 - z)]}2 +
 {2c(z0 - z) -[e(x0 -x) + f(y0 -y)]}2]

In the linear case the equation of the outward directed unit vector normal to the surface is,

N = i e + j f + k g

where,

Chapter 4: Geometry/Zoning

4-18 Chapter 4: Geometry/Zoning

R = Sqrt[a2 + b2 + c2], (normalization)
e = a/R
f = b/R
g = c/R

For example, for a plane perpendicular to the x axis (xplane), a = 1, b = c = 0, and the
outward direct unit vector normal to the surface is parallel to the x axis,

R = 1
e = 1
f = 0
g = 0

In the aligned quadratic case the equation of the outward directed unit vector normal to
the surface is,

N = i e + j f + k g

where,

R = Sqrt(a2(x0 -x)2 + b2(y0 - y)2 + c2(z0 - z)2), (normalization)
e = a (x - x0)/R
f = b (y - y0)/R
g = c (z - z0)/R

For example, for a sphere, r = the radius of the sphere, a = b = c = 1,

R = Sqrt((x0 -x)2+(y0 - y)2+(z0 - z)2)=r (radius of the sphere)
e = (x - x0)/R
f = (y - y0)/R
g = (z - z0)/R

In the rotated quadratic case the equation of the outward directed unit vector normal to
the surface is,

N = i e + j f + k g

where,

R = Sqrt[{2a(x0 - x) -[d(y0 - y) + e(z0 -z)]}2 +
 {2b(y0 - y) -[d(x0 -x) + f(z0 - z)]}2 +
 {2c(z0 - z) -[e(x0 -x) + f(y0 -y)]}2], (normalization)

e = {2a (x - x0) -[d(y0 -y) + e(z0 -z)]}/R
f = {2b (y - y0) -[d(x0 -x) + f(z0 -z)]}/R

Chapter 4: Geometry/Zoning

4-19 Chapter 4: Geometry/Zoning

g = {2c (z - z0) -[e(x0 -x) + f(y0 -y)]}/R

For a particle located at a point (x, y, z) on the surface, moving with direction cosines
(alpha, beta, gamma),

P = i alpha + j beta + k gamma

In order to properly reflect the particle we must define new direction cosines (alpha', beta',
gamma'),

Q = i alpha' + j beta' + k gamma'

such that,

P x N = Q x N

where N is the vector normal to the surface. Solving for the new direction cosines we find,

alpha' = alpha - 2 e Cos(theta)
beta' = beta - 2 f Cos(theta)
gamma' = gamma - 2 g Cos(theta)

where (e, f, g) are the components of the unit normal vector and,

Cos(theta) = P N = alpha e + beta f + gamma g

is the cosine of the angle between the outward directed unit vector normal to the surface
and the direction of travel of the particle. Note, this cosine is calculated by the code not
only to reflect particles, but also when scoring flux crossing surfaces (which must by
reciprocally weighted by this cosine).

For example, again considering a plane perpendicular to the x axis, (xplane), a = 1, b = c
= 0, and the outward direct unit vector normal to the surface is parallel to the x axis,

R = 1
e = 1
f = 0
g = 0

Cos(theta) = alpha

alpha' = alpha - 2 alpha = - alpha
beta' = beta
gamma' = gamma

Chapter 4: Geometry/Zoning

4-20 Chapter 4: Geometry/Zoning

the direction cosine with respect to the x axis (alpha) is reversed and the other two
direction cosines are unchanged.

As a second example, again consider a sphere, r = the radius of the sphere, and a = b = c =
1,

R = Sqrt((x0 -x)2+(y0 - y)2+(z0 - z)2)=r (radius of the sphere)
e = (x - x0)/r
f = (y - y0)/r
g = (z - z0)/r

Cos(theta) = [alpha (x - x0) + beta (y-y0) + gamma (z - z0)]/r

alpha' = alpha - 2 (x-x0)[alpha (x-x0) + beta (y-y0) + gamma (z-z0)]/r2
beta' = beta - 2 (y-y0)[alpha (x-x0) + beta (y-y0) + gamma (z-z0)]/r2
gamma'= gamma- 2 (z-z0)[alpha (x-x0) + beta (y-y0) + gamma (z-z0)]/r2

In this case the results are more complicated than in the case of an x plane, but still they
are fairly easy to interpret. For example, for a point on an axis,

1) y = y0, z = z0, (x - x0)2 = r2
 alpha' = alpha - 2 alpha = -alpha
 beta' = beta
 gamma' = gamma

2) x = x0, z = z0, (y - y0)2 = r2
 alpha' = alpha
 beta' = beta - 2 beta = -beta
 gamma' = gamma

3) x = x0, y = y0, (z - z0)2 = r2
 alpha' = alpha
 beta' = beta
 gamma' = gamma - 2 gamma = -gamma

In these three cases the reflection is identical to that obtained reflecting off of a plane
perpendicular to the x, y or z axis, respectively, where one of the direction cosines is
reversed and the other two are unchanged.

Consistency between WHATZONE and HOWFAR

Both WHATZONE and HOWFAR calculate the boundary function,

linear: f(x, y, z) = a (x0 - x) + b (y0 - y) + c (z0 - z)

quadratic: f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2]

Chapter 4: Geometry/Zoning

4-21 Chapter 4: Geometry/Zoning

rotated
quadratic: f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2

d(x0 - x)(y0 - y) + e(x0 - x)(z0 - z) + f(y0 -y)(z0 - z)]

WHATZONE calculates f(x, y, z) to determine if the point (x, y, z) is inside a zone and
HOWFAR calculates f(x, y, z) to define C0 of the linear or quadratic equation defining
the distance to the boundary. Since we are dealing with computers of finite accuracy it is
very important that both WHATZONE and HOWFAR perform these calculations in
exactly the same order to define f(x, y, z). Failure to do this can result in inconsistent
results where WHATZONE says a point is slightly inside a zone and HOWFAR says it's
outside and cannot correctly calculate a positive distance to a boundary.

Optimization of Geometry routines

TART95 spends a fair fraction of its time tracking particles using the geometry routines
WHATZONE, HOWFAR, and REFLECT, so that it is important to optimize the
running time of these routines. In the above discussion only two types of boundary
surfaces where described: planar and quadratic. As actually coded in TART95 each type
of surface that can be defined by input parameters is explicitly treated as a case in order to
minimize the number of operations that must be performed.

In the case of planes, rather than always considering the general case,

f(x, y, z) = a (x0 - x) + b (y0 - y) + c (z0 - z)

TART95 takes advantage of the fact that in many cases some of the coefficients (a, b, c)
are zero and others are unity. For example, in the case of an xplane, a = 1, b = c = 0, and
the code only has to consider the much simpler equation,

f(x, y, z) = x0 - x

In WHATZONE only one subtraction is required to define the equation we need to
decide whether or not a particle is inside a zone, based on this surface. In HOWFAR the
distance to boundary is,

R = (x0 - x)/alpha

and in REFLECT all that need be done is reverse the sign of the direction cosine with
respect to the x axis, alpha.

Similarly, in the case of quadratics, rather than always considering the general case,

f(x, y, z) = r2 - [a (x0 - x)2 + b (y0 - y)2 + c (z0 - z)2]

Chapter 4: Geometry/Zoning

4-22 Chapter 4: Geometry/Zoning

TART95 takes advantage of the fact that in many cases some of the coefficients (a, b, c)
are zero and others are unity. For example, in the case of a cylinder parallel to the x axis
(cylx), a = 0, b = c = 1, r = the radius of the cylinder, and the code only has to consider
the much simpler equation,

f(x, y, z) = r2 - [(y0 - y)2 + (z0 - z)2]

WHATZONE, HOWFAR and REFLECT all start from this simpler form to speed up
calculations.

Optimizing Geometry Input Parameters

By understanding how TART95 will use your description of geometry you can optimize
your input parameters. I should stress that none of the following considerations are
necessary in order to successfully use TART95. These are merely general guidelines that
should be considered when defining your geometry in order to minimize TART95 running
time. However, in designing the description of your geometry you should consider not
only TART95 running time, but also the clarity of the description as far as you being able
to understand it; generally your understanding is more important than optimizing running
time. A few points to consider,

Each zone is assigned a number to identify it, i.e., an integer from 1 to the maximum
number of zones allowed (currently 1000). In principle you can assign any number to any
zone. In practice you can optimize your input by assigning zone numbers starting at 1 and
incrementing by 1 sequentially to the number of zones in your problem. When a particle
leaves a zone and enters another zone WHATZONE is used to search for and define
which zone has been entered. This search is done in a circular fashion starting at the most
probable zone and continuing to search all zones until the correct zone is found. During
this search each zone number is tested in order to determine, first if this zone number is
used in the problem, and second, if the zone number is being used, whether or not the
particle is located in this zone. Therefore, if you have a problem involving only ten zones,
you can number them 1 through 10, or if you wish you can number them 100, 200, 300
....., 1000; it's your choice. But you should understand that the latter choice will slow
down the calculation, since WHATZONE will have to search through 1000 zones, in 990
cases merely to find out that the zone number is not used, and only in 10 cases actually
testing to determine whether or not the particle is in the zone.

A second consideration in assigning zone numbers, is to realize that due to the circular
search of zones in WHATZONE the search can be further optimized to defining zone
numbers in what you consider to be the most probable direction of particle flow, or
transport, i.e., generally from the source to the outer extremities of your geometry. For
example, if you have a point source at the center of a number of concentric spheres, the
most probable direction of flow is from inner most to outer most radius sphere, so that
you should number the zones from 1 to the number of spheres, from smallest to largest
radius. For simply connected geometry, such as a series of concentric spheres where a

Chapter 4: Geometry/Zoning

4-23 Chapter 4: Geometry/Zoning

particle leaving one zone can only enter one other zone across a given surface, the order
of zone numbers is not important, since TART95 will automatically define the most
probable zone entered, in order to optimize the search in WHATZONE. Only in
complicated truly 3-D geometry will the order of assignment of zone number be
important.

In defining the surfaces bounding each zone, the order of the surface is completely
arbitrary. For example, for a cylinder of finite length, you can define a zone to be: 1) inside
the cylinder, 2) above a plane at the bottom of the cylinder, and 3) below a plane at the
top of the cylinder. In your input you can define these three bounding surfaces in any
order. You can optimize your input by ordering the input surface, first by the most
restrictive in terms of volume, and next in terms of the simplicity of the surface, e.g.,
calculations involving simple aligned planes are the fastest, rotated general quadratics are
the most time consuming. For example, if you have a number of closely spaced concentric
cylinders that are very long, the most restrictive surfaces in terms of volume will be two
closely spaced cylinders defining the inner and outer radius of the zone, so that your input
should define the two bounding cylinders first. However, if you have a cylinder divided by
closely spaced planes along its axis, the most restrictive surfaces in terms of volume will
be two closely spaced planes, so that your input should define the two planes first. In
either of the two cases discussed here the idea is to allow WHATZONE to reject zones
by testing the minimum possible number of bounding surfaces before deciding the particle
is not in the zone and allowing it to move on to test the next zone. For example, for a
series of zones defined by cylinders and closely spaced planes, WHATZONE need only
test planes until it finds a zone bounding by two planes containing the point (x, y, z); only
then need it test cylindrical surfaces.

